

The Ladder Spoke Resonator at INFN-Legnaro

V. Andreev, **G. Bisoffi**, A.Pisent, E. Bissiato, M.Comunian, E. Fagotti INFN – I NI

T. Shirai

ICR, Kyoto University

An easily accessible SC resonator for a **5 mA proton accelerator** 352 MHz, 4 gaps, $\beta_0 = 0.12 \& 0.17$, 5÷20 MeV range

Framework

Linac design

E_z flatness = B-field = Large flanged joints

= RF Coupling = f-tuning

Outlook

Framework: $\beta = 0.1 \div 0.2$ SC cavities for 5 mA p linac

יאון 5 mA p superconducting linacs for RIBs production (but also ADS demonstrators..)

DRIVER ACCELERATOR for **EURISOL**

5 mA superconducting linac (SPES-EURISOL)

Total length	44	m
Final energy	89	MeV
Synchronous phase min/max	-35/-25	deg
Average acceleration	1.90909	MeV/m
Number of cavities	76	
Number of Quadrupoles	54	
Max. Quadrupole gradient	40	T/m
Quad aperture/length	2/5	cm
Current limit (losses<10-5)	>50	mA
RF dissipation	760	W(@4.5K)
Beam loading	420	kW
RF sys. pwr. cons. (h _{RF} =50%)	840	kW
Static cryo. losses (10 W/m)	440	W
Cryo. sys. cons. (h _{cryo} =1/500)	600	kW
Mains power	1440	kW

Beam Envelopes with the 5 mA p beam

G. Bisoffi - Ladder Spokes at INFN-LNL

WORKSHOP ON SPOKE RESONATORS, Los Alamos, October 7-8 2002

Twelve 4-gap Resonators in 2 Cryostats

Strong transverse focusing in the first cells (97° per FODO) to avoid the fast exponential growth of the parametric resonance

The focusing element: a superferric quadrupole

A Superferric Quadrupole for use in an SRF Cryomodule, F. Zeller¹, J. C. DeKamp¹, A. Facco², T. L. Grimm¹, J. Kim¹, and R. Zink¹

1 NSCL-MSU 2 INFN - LNL.

Properties

Effective length 50 mm

Radius 20 mm

Gradient 31 T/m

Current (2-D calculation) 63 A

 H_{α} field in the resonator < 0.05 mT

Why quadrupoles? Homogeneous to preceding RFQ and following linac scheme With respect to QP-doublet and Solenoid, easier matching with the RFQ

The 4-gap Ladder Resonator

 $L_{int} = 200 \text{ mm}$

Huge flanged ports for:

- Inspections
- Repair (grinding and EBW)
- BCP and rinsing

Three stems (four gaps)

Stems have a racetrack cross-section

- from 65 mm to 125 mm (1st and 3rd)
- from 65 mm to 166 mm (2nd), with two 72 mmØ coupling holes

Beam bore 25 mm, Gap length 25 mm

WORKSHOP ON SPOKE RESONATORS, Los Alamos, October 7-8 2002

G. Bisoffi - Ladder Spokes at INFN-LNL

Ladder Resonator (β_0 =0.12): rf parameters

Frequency	352 MHz
Accelerating field flatness (between central and end cells)	100 %
$B_{s,p}$	65 mT (set as limit) @ the coupling hole
B at the flanged joint	1.5 mT
E _{s,p}	20 MV/m
Energy gain at $\beta_0 = 0.12$	1.15 MeV/q
Accelerating Field E ₀	5.8 MV/m
Beam Loading	4.2÷5.8 kW
U/E _a ²	59 mJ/(MV/m) ²
Rf coupling (coupling holes)	1.2 %
Q - @ 4 K (assumed)	5 x 10 ⁸
Geometrical factor G (Ω)	45 Ω
B _{s,p} /E ₀ T	11.2 mT/MV/m
P_{diss} (@ Q = 5 x 10 ⁸)	10 W

Field Uniformity on Beam Axis = 100%

$\beta_0 = 0.12$ Ladder: TTF curve

TTF curve of the ladder resonator (blue diamonds), plotted together with the polynomial approximation (eq. (1), green dash curve) and the 4-thin-gap approximation (eq (2), red solid curve).

WORKSHOP ON SPOKE RESONATORS, Los Alamos, October 7-8 2002

G. Bisoffi - Ladder Spokes at INFN-LNL

Distribution of Surface Magnetic Field

SC Joint on SC-RFQ at INFN-LNL

Nb/Cu sputtered end-plate (no gasket, just pressure – see also K.W. Shepard, IEEE Trans. on Nucl. Sci., NS-24, N.3, June 1977, 1147

RF Coupling

Without coulping holes:

Gap length very small vs.

stem width→ mode degen.

With holes: 1.2 % coupling

Positioning error of one stem

by 0.1 mm in $z \longrightarrow$

1% deviation in E_z flatness

(and mode separation +1.5%)

 $f_2 = 357.2 \text{ MHz}$

 $f_3 = 449.1 \text{ MHz}$

Frequency Tuning

Rough Tuning (during

construction): stepwise
reduction of stem length
(both sides)

+1.33 MHz/mm

<u>Fine Tuning</u> (in operation):

end-plate deformation (both sides)

-1.08 MHz/ (0.1mm)

Outlook

- Compact acceleration of a 5 mA p beam (12 cavities, 2 cryostats, 7 m):
 5÷20 MeV (β = 0.1÷0.2)
- The Ladder scheme allows ample access for inspection, repairs and treatments while retaining good rf properties

(100% field flatness, E_{pk} =20 MV/m, H_{pk} = 65 mT, E_a = 5.8 MV/m)

- Mode degeneration is overcome by rf coupling holes in the central stem
- Next steps: mechanical analysis, EBW and construction tests, definition of tuners and rf ports, design of the liquid He dewar

- Plasma discharge: sputtering of Cu and INOX layer in a high-j region
- Chemical Polishing would have taken months
- No CP, 3M Scotch Brite lapping followed by HPWR (2 weeks)

- CP again avoided
- 3M Imperial,
 with Al₂O₃ abrasive
 (60 to 2 μm)
- HPWR

Evolution of SRFQ2 Performance

Superconducting cavities

Cavity type	4-gap	4-gap	HWR	HWR	units
β_0	0.124	0.17	0.25	0.33	
n. of gap	4	4	2	2	
$\mathbf{E_p}/\mathbf{E_a}$	~3.	~3.	~4	~4	
$\mathbf{H_p/E_a}$	102	100	95	106	Gauss/(MV/m)
$R_s \times Q$	45	62	54	66	Ω
Eff. length	0.2	0.29	0.18	0.214	m
Bore diameter	25	25	30	30	mm
Design E _a	6	6	6	6	MV/m
Design energy gain	1.2	1.74	1.08	1.284	MeV/q
n. required	6	6	32	32	

WORKSHOP ON SPOKE RESONATORS, Los Alamos, October 7-8 2002

G. Bisoffi - Ladder Spokes at INFN-LNL

Linac compactness at low β

△W: maximum acceleration/cavity is desired for economy reasons

Parametric resonance $\sigma_L = 2\sigma_T$ must be avoided (width: 0.4" σ_T / σ_L " 0.6) σ_T " $\pi/2$ (envelope instability)

Consequently: $\sigma_L = \sigma_T/0.4 = \pi/0.8$. But:

$$\sigma_L \approx L \sqrt{\frac{en\Delta W}{mc^2 L} \frac{2\pi \sin(-\phi_s)}{\beta^3 \gamma^3 \lambda}} \propto \sqrt{L}$$

(E average accelerating field, n number of cavities per period, $\beta - \gamma$ relativistic parameters, λ rf wavelength)

Given cavity no. and energy gain, there is a limit on the period length L

A compact lattice is needed for high performance cavities

WORKSHOP ON SPOKE RESONATORS, Los Alamos, October 7-8 2002

G. Bisoffi - Ladder Spokes at INFN-LNL

Linac lattice

Figure 1 Linac layout

Length = 44 m, 10 cryostats, 76 resonators, E $_{\rm fin}$ = 90 MeV

Choice of the number of gaps in the desired beta range

Transit time factor versus β , with 3,4 and 5 gaps in the range b = 0.1÷0.2

TTF and Energy along the linac

(TTF is calculated here for ideal gaps, with $\beta_0 = 0.12$ and $\beta_0 = 0.17$)

4-gap Ladder Resonator (β_0 =0.17)

Frequency	352 MHz
Accelerating field flatness (between central and end cells)	96 %
B _{s,p}	65 mT (set as limit) @ the coupling hole
B at the flanged joint	1.5 mT
E _{s,p}	25 MV/m (reas. <u>limit 25÷30 MV/m</u>)
Energy gain at $\beta_0 = 0.12$	1.68 MeV/q
Accelerating Field E ₀	8 MV/m
Beam Loading	6÷8 kW
U/E _a ²	89 mJ/(MV/m) ²
Rf coupling (coupling holes)	0.7 %
Q - @ 4 K (assumed)	5 x 10 ⁸
Geometrical factor G (Ω)	62 Ω
$B_{s,p}/E_0T$	8.7 mT/MV/m
Rf power dissipation (@ Q = 5 x 10 ⁸)	10 W

Which cavity to squeeze in the available space $(L_{int}=0.2 \text{ m})$?

Common reference: $H_{pk} < 65 \text{ mT}$, $E_{pk} < 30 \text{ MV/m}$

2-gap options

- HWR, QWR conical and cylindrical: $E_{pk}/E_a \sim 5$, $\Delta W < 0.6$ MV
- Spoke (examples)

G. Olry et al., IPN-Orsay EPAC2002, p. 2691

352 MH
$$\zeta$$
, β_0 = 0.19
 E_{pk}/E_a = 3.56
 E_a = 8.4 MV/m

DESIGN OF A β=0.175 **2-GAP SPOKE RESONATOR***

F.L.Krawczyk et al., SRF2001 http://conference.kek.jp/SRF2001/

3-gap options

K.W. Shepard et al., ANL SRF2001 345 MHz, $\beta_0 = 0.39$

V. Andreev et al., INFN-LNL EPAC2002, p. 2208

352 MHz, β_0 = 0.13 $E_{pk}/E_a = 4.65$ **Ea = 4.77 MV/m**